Copied to
clipboard

G = C22⋊C4×C23order 368 = 24·23

Direct product of C23 and C22⋊C4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C22⋊C4×C23, C22⋊C92, C23.C46, C46.12D4, (C2×C46)⋊1C4, (C2×C4)⋊1C46, (C2×C92)⋊2C2, C2.1(C2×C92), C2.1(D4×C23), C46.10(C2×C4), C22.2(C2×C46), (C22×C46).1C2, (C2×C46).13C22, SmallGroup(368,20)

Series: Derived Chief Lower central Upper central

C1C2 — C22⋊C4×C23
C1C2C22C2×C46C2×C92 — C22⋊C4×C23
C1C2 — C22⋊C4×C23
C1C2×C46 — C22⋊C4×C23

Generators and relations for C22⋊C4×C23
 G = < a,b,c,d | a23=b2=c2=d4=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, cd=dc >

2C2
2C2
2C4
2C22
2C4
2C22
2C46
2C46
2C92
2C92
2C2×C46
2C2×C46

Smallest permutation representation of C22⋊C4×C23
On 184 points
Generators in S184
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23)(24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46)(47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69)(70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92)(93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115)(116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138)(139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161)(162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184)
(1 76)(2 77)(3 78)(4 79)(5 80)(6 81)(7 82)(8 83)(9 84)(10 85)(11 86)(12 87)(13 88)(14 89)(15 90)(16 91)(17 92)(18 70)(19 71)(20 72)(21 73)(22 74)(23 75)(24 49)(25 50)(26 51)(27 52)(28 53)(29 54)(30 55)(31 56)(32 57)(33 58)(34 59)(35 60)(36 61)(37 62)(38 63)(39 64)(40 65)(41 66)(42 67)(43 68)(44 69)(45 47)(46 48)(93 163)(94 164)(95 165)(96 166)(97 167)(98 168)(99 169)(100 170)(101 171)(102 172)(103 173)(104 174)(105 175)(106 176)(107 177)(108 178)(109 179)(110 180)(111 181)(112 182)(113 183)(114 184)(115 162)(116 147)(117 148)(118 149)(119 150)(120 151)(121 152)(122 153)(123 154)(124 155)(125 156)(126 157)(127 158)(128 159)(129 160)(130 161)(131 139)(132 140)(133 141)(134 142)(135 143)(136 144)(137 145)(138 146)
(1 150)(2 151)(3 152)(4 153)(5 154)(6 155)(7 156)(8 157)(9 158)(10 159)(11 160)(12 161)(13 139)(14 140)(15 141)(16 142)(17 143)(18 144)(19 145)(20 146)(21 147)(22 148)(23 149)(24 171)(25 172)(26 173)(27 174)(28 175)(29 176)(30 177)(31 178)(32 179)(33 180)(34 181)(35 182)(36 183)(37 184)(38 162)(39 163)(40 164)(41 165)(42 166)(43 167)(44 168)(45 169)(46 170)(47 99)(48 100)(49 101)(50 102)(51 103)(52 104)(53 105)(54 106)(55 107)(56 108)(57 109)(58 110)(59 111)(60 112)(61 113)(62 114)(63 115)(64 93)(65 94)(66 95)(67 96)(68 97)(69 98)(70 136)(71 137)(72 138)(73 116)(74 117)(75 118)(76 119)(77 120)(78 121)(79 122)(80 123)(81 124)(82 125)(83 126)(84 127)(85 128)(86 129)(87 130)(88 131)(89 132)(90 133)(91 134)(92 135)
(1 34 76 111)(2 35 77 112)(3 36 78 113)(4 37 79 114)(5 38 80 115)(6 39 81 93)(7 40 82 94)(8 41 83 95)(9 42 84 96)(10 43 85 97)(11 44 86 98)(12 45 87 99)(13 46 88 100)(14 24 89 101)(15 25 90 102)(16 26 91 103)(17 27 92 104)(18 28 70 105)(19 29 71 106)(20 30 72 107)(21 31 73 108)(22 32 74 109)(23 33 75 110)(47 161 169 130)(48 139 170 131)(49 140 171 132)(50 141 172 133)(51 142 173 134)(52 143 174 135)(53 144 175 136)(54 145 176 137)(55 146 177 138)(56 147 178 116)(57 148 179 117)(58 149 180 118)(59 150 181 119)(60 151 182 120)(61 152 183 121)(62 153 184 122)(63 154 162 123)(64 155 163 124)(65 156 164 125)(66 157 165 126)(67 158 166 127)(68 159 167 128)(69 160 168 129)

G:=sub<Sym(184)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69)(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115)(116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138)(139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161)(162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184), (1,76)(2,77)(3,78)(4,79)(5,80)(6,81)(7,82)(8,83)(9,84)(10,85)(11,86)(12,87)(13,88)(14,89)(15,90)(16,91)(17,92)(18,70)(19,71)(20,72)(21,73)(22,74)(23,75)(24,49)(25,50)(26,51)(27,52)(28,53)(29,54)(30,55)(31,56)(32,57)(33,58)(34,59)(35,60)(36,61)(37,62)(38,63)(39,64)(40,65)(41,66)(42,67)(43,68)(44,69)(45,47)(46,48)(93,163)(94,164)(95,165)(96,166)(97,167)(98,168)(99,169)(100,170)(101,171)(102,172)(103,173)(104,174)(105,175)(106,176)(107,177)(108,178)(109,179)(110,180)(111,181)(112,182)(113,183)(114,184)(115,162)(116,147)(117,148)(118,149)(119,150)(120,151)(121,152)(122,153)(123,154)(124,155)(125,156)(126,157)(127,158)(128,159)(129,160)(130,161)(131,139)(132,140)(133,141)(134,142)(135,143)(136,144)(137,145)(138,146), (1,150)(2,151)(3,152)(4,153)(5,154)(6,155)(7,156)(8,157)(9,158)(10,159)(11,160)(12,161)(13,139)(14,140)(15,141)(16,142)(17,143)(18,144)(19,145)(20,146)(21,147)(22,148)(23,149)(24,171)(25,172)(26,173)(27,174)(28,175)(29,176)(30,177)(31,178)(32,179)(33,180)(34,181)(35,182)(36,183)(37,184)(38,162)(39,163)(40,164)(41,165)(42,166)(43,167)(44,168)(45,169)(46,170)(47,99)(48,100)(49,101)(50,102)(51,103)(52,104)(53,105)(54,106)(55,107)(56,108)(57,109)(58,110)(59,111)(60,112)(61,113)(62,114)(63,115)(64,93)(65,94)(66,95)(67,96)(68,97)(69,98)(70,136)(71,137)(72,138)(73,116)(74,117)(75,118)(76,119)(77,120)(78,121)(79,122)(80,123)(81,124)(82,125)(83,126)(84,127)(85,128)(86,129)(87,130)(88,131)(89,132)(90,133)(91,134)(92,135), (1,34,76,111)(2,35,77,112)(3,36,78,113)(4,37,79,114)(5,38,80,115)(6,39,81,93)(7,40,82,94)(8,41,83,95)(9,42,84,96)(10,43,85,97)(11,44,86,98)(12,45,87,99)(13,46,88,100)(14,24,89,101)(15,25,90,102)(16,26,91,103)(17,27,92,104)(18,28,70,105)(19,29,71,106)(20,30,72,107)(21,31,73,108)(22,32,74,109)(23,33,75,110)(47,161,169,130)(48,139,170,131)(49,140,171,132)(50,141,172,133)(51,142,173,134)(52,143,174,135)(53,144,175,136)(54,145,176,137)(55,146,177,138)(56,147,178,116)(57,148,179,117)(58,149,180,118)(59,150,181,119)(60,151,182,120)(61,152,183,121)(62,153,184,122)(63,154,162,123)(64,155,163,124)(65,156,164,125)(66,157,165,126)(67,158,166,127)(68,159,167,128)(69,160,168,129)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69)(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115)(116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138)(139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161)(162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184), (1,76)(2,77)(3,78)(4,79)(5,80)(6,81)(7,82)(8,83)(9,84)(10,85)(11,86)(12,87)(13,88)(14,89)(15,90)(16,91)(17,92)(18,70)(19,71)(20,72)(21,73)(22,74)(23,75)(24,49)(25,50)(26,51)(27,52)(28,53)(29,54)(30,55)(31,56)(32,57)(33,58)(34,59)(35,60)(36,61)(37,62)(38,63)(39,64)(40,65)(41,66)(42,67)(43,68)(44,69)(45,47)(46,48)(93,163)(94,164)(95,165)(96,166)(97,167)(98,168)(99,169)(100,170)(101,171)(102,172)(103,173)(104,174)(105,175)(106,176)(107,177)(108,178)(109,179)(110,180)(111,181)(112,182)(113,183)(114,184)(115,162)(116,147)(117,148)(118,149)(119,150)(120,151)(121,152)(122,153)(123,154)(124,155)(125,156)(126,157)(127,158)(128,159)(129,160)(130,161)(131,139)(132,140)(133,141)(134,142)(135,143)(136,144)(137,145)(138,146), (1,150)(2,151)(3,152)(4,153)(5,154)(6,155)(7,156)(8,157)(9,158)(10,159)(11,160)(12,161)(13,139)(14,140)(15,141)(16,142)(17,143)(18,144)(19,145)(20,146)(21,147)(22,148)(23,149)(24,171)(25,172)(26,173)(27,174)(28,175)(29,176)(30,177)(31,178)(32,179)(33,180)(34,181)(35,182)(36,183)(37,184)(38,162)(39,163)(40,164)(41,165)(42,166)(43,167)(44,168)(45,169)(46,170)(47,99)(48,100)(49,101)(50,102)(51,103)(52,104)(53,105)(54,106)(55,107)(56,108)(57,109)(58,110)(59,111)(60,112)(61,113)(62,114)(63,115)(64,93)(65,94)(66,95)(67,96)(68,97)(69,98)(70,136)(71,137)(72,138)(73,116)(74,117)(75,118)(76,119)(77,120)(78,121)(79,122)(80,123)(81,124)(82,125)(83,126)(84,127)(85,128)(86,129)(87,130)(88,131)(89,132)(90,133)(91,134)(92,135), (1,34,76,111)(2,35,77,112)(3,36,78,113)(4,37,79,114)(5,38,80,115)(6,39,81,93)(7,40,82,94)(8,41,83,95)(9,42,84,96)(10,43,85,97)(11,44,86,98)(12,45,87,99)(13,46,88,100)(14,24,89,101)(15,25,90,102)(16,26,91,103)(17,27,92,104)(18,28,70,105)(19,29,71,106)(20,30,72,107)(21,31,73,108)(22,32,74,109)(23,33,75,110)(47,161,169,130)(48,139,170,131)(49,140,171,132)(50,141,172,133)(51,142,173,134)(52,143,174,135)(53,144,175,136)(54,145,176,137)(55,146,177,138)(56,147,178,116)(57,148,179,117)(58,149,180,118)(59,150,181,119)(60,151,182,120)(61,152,183,121)(62,153,184,122)(63,154,162,123)(64,155,163,124)(65,156,164,125)(66,157,165,126)(67,158,166,127)(68,159,167,128)(69,160,168,129) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23),(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46),(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69),(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92),(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115),(116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138),(139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161),(162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184)], [(1,76),(2,77),(3,78),(4,79),(5,80),(6,81),(7,82),(8,83),(9,84),(10,85),(11,86),(12,87),(13,88),(14,89),(15,90),(16,91),(17,92),(18,70),(19,71),(20,72),(21,73),(22,74),(23,75),(24,49),(25,50),(26,51),(27,52),(28,53),(29,54),(30,55),(31,56),(32,57),(33,58),(34,59),(35,60),(36,61),(37,62),(38,63),(39,64),(40,65),(41,66),(42,67),(43,68),(44,69),(45,47),(46,48),(93,163),(94,164),(95,165),(96,166),(97,167),(98,168),(99,169),(100,170),(101,171),(102,172),(103,173),(104,174),(105,175),(106,176),(107,177),(108,178),(109,179),(110,180),(111,181),(112,182),(113,183),(114,184),(115,162),(116,147),(117,148),(118,149),(119,150),(120,151),(121,152),(122,153),(123,154),(124,155),(125,156),(126,157),(127,158),(128,159),(129,160),(130,161),(131,139),(132,140),(133,141),(134,142),(135,143),(136,144),(137,145),(138,146)], [(1,150),(2,151),(3,152),(4,153),(5,154),(6,155),(7,156),(8,157),(9,158),(10,159),(11,160),(12,161),(13,139),(14,140),(15,141),(16,142),(17,143),(18,144),(19,145),(20,146),(21,147),(22,148),(23,149),(24,171),(25,172),(26,173),(27,174),(28,175),(29,176),(30,177),(31,178),(32,179),(33,180),(34,181),(35,182),(36,183),(37,184),(38,162),(39,163),(40,164),(41,165),(42,166),(43,167),(44,168),(45,169),(46,170),(47,99),(48,100),(49,101),(50,102),(51,103),(52,104),(53,105),(54,106),(55,107),(56,108),(57,109),(58,110),(59,111),(60,112),(61,113),(62,114),(63,115),(64,93),(65,94),(66,95),(67,96),(68,97),(69,98),(70,136),(71,137),(72,138),(73,116),(74,117),(75,118),(76,119),(77,120),(78,121),(79,122),(80,123),(81,124),(82,125),(83,126),(84,127),(85,128),(86,129),(87,130),(88,131),(89,132),(90,133),(91,134),(92,135)], [(1,34,76,111),(2,35,77,112),(3,36,78,113),(4,37,79,114),(5,38,80,115),(6,39,81,93),(7,40,82,94),(8,41,83,95),(9,42,84,96),(10,43,85,97),(11,44,86,98),(12,45,87,99),(13,46,88,100),(14,24,89,101),(15,25,90,102),(16,26,91,103),(17,27,92,104),(18,28,70,105),(19,29,71,106),(20,30,72,107),(21,31,73,108),(22,32,74,109),(23,33,75,110),(47,161,169,130),(48,139,170,131),(49,140,171,132),(50,141,172,133),(51,142,173,134),(52,143,174,135),(53,144,175,136),(54,145,176,137),(55,146,177,138),(56,147,178,116),(57,148,179,117),(58,149,180,118),(59,150,181,119),(60,151,182,120),(61,152,183,121),(62,153,184,122),(63,154,162,123),(64,155,163,124),(65,156,164,125),(66,157,165,126),(67,158,166,127),(68,159,167,128),(69,160,168,129)]])

230 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D23A···23V46A···46BN46BO···46DF92A···92CJ
order122222444423···2346···4646···4692···92
size11112222221···11···12···22···2

230 irreducible representations

dim1111111122
type++++
imageC1C2C2C4C23C46C46C92D4D4×C23
kernelC22⋊C4×C23C2×C92C22×C46C2×C46C22⋊C4C2×C4C23C22C46C2
# reps121422442288244

Matrix representation of C22⋊C4×C23 in GL3(𝔽277) generated by

100
02360
00236
,
100
0133
00276
,
100
02760
00276
,
6000
033267
0275244
G:=sub<GL(3,GF(277))| [1,0,0,0,236,0,0,0,236],[1,0,0,0,1,0,0,33,276],[1,0,0,0,276,0,0,0,276],[60,0,0,0,33,275,0,267,244] >;

C22⋊C4×C23 in GAP, Magma, Sage, TeX

C_2^2\rtimes C_4\times C_{23}
% in TeX

G:=Group("C2^2:C4xC23");
// GroupNames label

G:=SmallGroup(368,20);
// by ID

G=gap.SmallGroup(368,20);
# by ID

G:=PCGroup([5,-2,-2,-23,-2,-2,920,941]);
// Polycyclic

G:=Group<a,b,c,d|a^23=b^2=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,c*d=d*c>;
// generators/relations

Export

Subgroup lattice of C22⋊C4×C23 in TeX

׿
×
𝔽